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Motivation

� Complexity of scientific software increases with simulation 
fidelity, multi-physics coupling, and computer power

software crisis

� Tools

– Computational accelerator community: Tremendous investment in 
software applications, codes written in a variety of languages, 
targeting a range of computational platforms

– Common Component Architecture (CCA) component vision:

Enable the HPC community to leverage existing applications, 

creating modular, reusable software components that facilitate the 

combined use of historically independent codes to add new 

capabilities (see www.cca-forum.org)

• Long-term Goal: Foster a component community in 
computational accelerator physics, with emphasis on easily 
incorporating new algorithms and performance enhancements



Approach

• Using CCA tools and specifications, prototype an accelerator 
simulation from existing codes that were not originally designed to 
work together

• Develop components based on codes for beam dynamics; also 
incorporate external numerical libraries

– Synergia2 beam physics framework (FNAL)

– MaryLie/Impact beam physics application (LBNL/U. Maryland)

– High-performance numerical tools via TOPS (including PETSc (ANL), LBNL 
numerics)

http://www.cca-forum.org



Benefits

• Key features of CCA components

– Programming language interoperability via SIDL

– Dynamic composability

– Encouragement of common interfaces

• Benefits to COMPASS

– Improved Productivity

• Reuse physics components across COMPASS project and the 
accelerator community

• Leverage tools and libraries developed by experts in other 
specialties (math/cs) 

– Enhanced Performance

• Exploit highly optimized numerical software 

• Enable adaptive method configuration and selection to better 
match dynamically changing computational requirements



Initial Work: 

Beam Dynamics Components

• Accelerator modelling components (collaboration 
with TASCS):

– F90-based beam optics components (quadrupoles 
and drifts) from the MaryLie/Impact application 
(LBNL)

– C++ and F90 particle store components from the 
Synergia2 framework (FNAL)

– A newly implemented C++-based space charge 
solver, Sphyraena, which makes use of Synergia2, 
PETSc (ANL), and FFTW.

• Component interfaces allowed us to capture and 
make available only the functionality that was 
desired from the existing codes.

• Reference: D. Dechow, B. Norris, and J. 
Amundson, The Common Component 
Architecture for Particle Accelerator 
Simulations, Proceedings of HPC-
GECO/CompFrame'07, October 21-22, 2007, 
Montreal, Quebec, Canada, ACM, 2007.



Prototype CCA Beam Dynamics Toolkit

Developed prototype Contractor-enabled CCA beam dynamics toolkit

• Components: interact only through well-defined interfaces

• Ports: well-defined interfaces through which components interact

– Follow a provides/uses pattern

• Frameworks: hold components while applications are assembled and executed,
control the connection of ports, provide services to components

Screenshot of Ccaffeine framework’s GUI



Provides-Uses Pattern

• FooComponent:

— Declares that it will support 

a particular port by calling 

addProvidesPort()

• BarComponent:

— Declares that it requires a 

set of services by calling 

registerUsesPort()

— Retrieves reference to port 

by calling getPort()



Implemented Components

Synergia.BeamOptics: an ML/I component for obtaining transfer 
map

testsp.Fquad3: a driver component for testing the 
Synergia.BeamOptics; provides a go port and uses a 
Synergia.BeamOpticsPort port

Synergia.BeamBunch: a Synergia2 component for managing the 
particles of a beam bunch in a 6-D representation

testsp.BeamDriver: a driver component for testing 
Synergia.BeamBunch; the component provides a go port and 
uses a Synergia.ParticleStore port

Synergia.BeamSolver: a Synergia2 component that uses a 
recently developed Synergia2 solver, Sphyraena, for solving 
Poisson’s equation; this component provides a 
Synergia.PoissonSolver port and uses a Synergia.ParticleStore 
port



Implemented Components 

(cont.)

testsp.SolverDriver: a driver component for testing the 
Synergia.BeamSolver and Synergia.BeamBunch components; 
the component provides a go port and uses a Syner-
gia.PoissonSolver port

Synergia.ChannelSimSolver: a Synergia2 component also using 
Sphyraena; this component provides a Synergia.PoissonSolver 
port and uses both a Synergia.ParticleStore port and a 
Synergia.BeamOpticsPort port

testsp.ChannelSimDriver: a driver component for testing the 
Synergia.BeamSolver, Synergia.BeamBunch, and 
Synergia.BeamOptics components; the component provides a 
go port and uses a Synergia.PoissonSolver port

testsp.ChannelDriver: a standalone driver component used for 
prototyping and testing the pieces of the Synergia2 framework 
that can be imported into a CCA-based framework; the 
component provides a go port



Beam Dynamics:  Defining Interfaces

• Refactoring Synergia2 and exploring 
interface issues for common 
functionalities

– Beam bunch

– Beamline

• Demonstrated interchanging CHEF and 
MaryLie beamline components at the 
map level, even though beamline 
models themselves are very different

– Space charge

• Synergia2 can use space charge 
modules from either IMPACT or 
Sphraena

– Electron cloud

� Challenges

– Granularity: Overheads that apply per 
particle get an extra factor of ~107

• unacceptable … use aggregation

– Parallel decomposition of fields, etc., 
must be compatible:  may force coarser 
granularity
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Reference: Multiscale, Multiphysics Beam Dynamics Framework 
Design and Applications, J. Amundson, D. Dechow, L. McInnes, B. 
Norris, P. Spentzouris and P. Stoltz, J. Phys.: Conf. Ser. 125 (2008) 
012001, available via:

http://www.iop.org/EJ/abstract /1742-6596/125/1/012001



Initial Simulations Using Synergia2 

Components

• See code at pcac.fnal.gov
– FODO cell demo

– Apply space charge kick

• Exploring performance, including scalable Poisson solvers, 
which are essential for beam dynamics simulations
– FFT via IMPACT

– Sphyraena-based implementations

– Possibly others developed by ComPASS participants



Ongoing and Future Work

• Immediate priorities: Critical for COMPASS component integration

– Collaborate with TASCS to address

• Babel/SIDL interlanguage capabilities with struct support, broad support of 
Fortran compilers

• Ability to run on leadership class facilities (including Cray XT4, BG/P)

– Complete initial componentization of Synergia2

– Evaluate performance of original Synergia application and component variant 
on Project-X and LARP simulations, with emphasis on beam dynamics 
applications for space charge and wakefields

• Longer-term challenges: Collaborate with TASCS, PERI, and TOPS to 
address issues in Computational Quality of Service (CQoS) for accelerator 
simulations, 

– How, during runtime, can we make make sound choices for reliability, 
accuracy, and performance, taking into account the problem instance and 
computational environment?

• Composition: select initial component implementations and configuration 
parameters

• Reconfiguration: change parameters

• Substitution: change implementations



Synergia2 & CQoS


